In the best popping kernels, the pericarp is composed of a stronger, more highly ordered crystalline arrangement of the cellulose molecules than the pericarp of the poorer performing varieties, according to Hamaker and crystallographer Rengaswami Chandrasekaran, one of the team members. In laboratory studies, the researchers demonstrated that these stronger crystalline structures tend to maximize moisture retention, leading to a more complete rupture and fewer unpopped kernels.
“We believe that the amount and location of the cellulose component of the kernel are critical for crystallinity and think that this property can be transferred to corn kernels to improve their popping performance,” Hamaker says. “We’re not sure yet exactly how this will be achieved, but we’re optimistic that enterprising researchers will be able to do this in the near future.”
Possible techniques include selective breeding of those kernel varieties that best exhibit this optimal crystalline structure, chemical modification of corn kernels to produce the desired structure and even genetic engineering of the corn plant. If researchers are successful, the new microwave popcorn could be available to consumers in 3 to 5 years, Hamaker predicts.
Although the new popcorn will be slightly different chemically than conventional microwave popcorn, mainly from the presence of more cellulose, it will look and taste just like any other popcorn, he says. [h1]Although this study focused on microwave popcorn, the modified kernels will likely show improvements in popping quality using hot oil and hot air popping techniques, he says.
Popcorn manufacturers have already expressed strong interest in this research, which was funded by Purdue’s Whistler Center for Carbohydrate Research.
The study is scheduled to appear in the July 11 print version of the American Chemical Society’s BioMacromolecules, a peer-reviewed journal, and was published in the online version of the journal April 7. ACS is the world’s largest scientific society.
From an ACS press release.