Awschalom and his graduate students Yuichiro Kato and Roberto Myers, along with Art Gossard, a professor of materials and electrical and computer engineering, first discovered these signatures of the spin Hall effect in semiconductor chips made from gallium arsenide (GaAs), which is similar to those used in cell phones, and also studied the effect in samples made from indium gallium arsenide (InGaAs).
“We were initially skeptical when we first observed this in the laboratory,” said Awschalom. “We kept asking ourselves why hadn’t anyone seen this earlier?” Kato agrees: “We thought it was just noise at first, but the peaks kept reproducing as the scans were repeated.”
The research team constructed a Kerr microscope with 1-micrometer resolution that allowed them to clearly observe regions of electrons with opposite spins accumulated along the edges of the semiconductor chips. Because no net charge was flowing, attempts to see the spin Hall effect using electronic detectors have been problematic. Some of the experiments carried out at UCSB ran for nearly 30 continuous hours, requiring the researchers to carefully control the laboratory environment and the experimental conditions for data collection.
The potential applications of this discovery are numerous and may include sensing technologies, potential pathways towards shuttling spin information in semiconductors as well as quantum computing and quantum communication, according to Awschalom. “The most exciting aspect of this finding is that you don’t know exactly where it’s going to lead,” he said. This research was funded in part by the Defense Advanced Research Projects Agency and the National Science Foundation.
At UCSB, Awschalom is director of the Center for Spintronics and Quantum Computation, and is associate scientific director of the California Nanosystems Institute.
Awschalom joined the University of California, Santa Barbara as a professor of physics in 1991. His research has been chronicled in his more than 250 scientific journal articles, and has also been featured in the New York Times, the Wall Street Journal, the San Francisco Chronicle, the Dallas Morning News, Discover magazine, Scientific American, Physics World, and New Scientist. His research focuses on optical and magnetic interactions in semiconductor quantum structures, spin dynamics and coherence in condensed matter systems, macroscopic quantum phenomena in nanometer-scale magnets, and quantum information processing in the solid state.
Awschalom’s honors include the IBM Outstanding Innovation Award, the Outstanding Investigator Prize from the Materials Research Society, the International Union of Pure and Applied Physics (IUPAP) Magnetism Prize, and the 2005 Oliver E. Buckley Prize from the American Physical Society.
Text for this article (except for the first paragraph) was taken from a UCSD press release.
Ignoring for the moment the absurdity of a point-like particle spinning, the electron’s spin in quantum mechanics is treated as if it gives the electron a magnetic moment, albeit smaller than, say, the magnetic moment caused by an electron orbiting a nucleus. One could argue that the spin effect is merely another manifestation of magnetism. it doesn’t stop there: nuclei also have spins.
Applying the Law of Physics to spinning electrons becoming independent entangled particles doesnt stop at electrons but continues thru to protons, neutrons, and their sub-particle makeup.
http://colossalstorage.net
Given that it took 33 years to detect the spin Hall effect that was predicted by theory it is not unreasonable to postulate the discovery of cold fusion being followed by a significant amount of time passing before a theoretical explanation being produced.
For example a number of years passed after the Michelson-Morley experiment took place before Einstein came up with a testable theory to explain the results of said experiment.