Nitrogen-fixing aliens

Scientists hope that Titan, a moon of Saturn, with its nitrogen-rich atmosphere, could act as a model system for terrestrial chemistry before life began on our planet. Now, another step towards that goal has emerged as researchers at the University of Arizona have incorporated atmospheric nitrogen into organic macromolecules under conditions resembling those on Titan.

“Titan is so interesting because its nitrogen-dominated atmosphere and organic chemistry might give us a clue to the origin of life on our Earth,” explains Hiroshi Imanaka, who is an assistant research scientist in the UA’s Lunar and Planetary Laboratory. “Nitrogen is an essential element of life.” Titan looks orange through a telescope because its atmosphere is a rich smog of organic molecules. Particles in the smog could settle on the surface and be exposed to conditions that might eventually create life, said Imanaka.

Saturn's A and F rings, the small moon Epimetheus and the smog-enshrouded Titan, Saturn’s largest moon. (Credit: NASA/JPL/Space Science Institute)
Saturn's A and F rings, the small moon Epimetheus and the smog-enshrouded Titan, Saturn’s largest moon. (Credit: NASA/JPL/Space Science Institute)

Of course, nitrogen alone is not enough, nitrogen molecules must be converted to a chemically active form that can drive the necessary biochemical reactions that underpin biological systems.

Imanaka and Mark Smith converted a nitrogen-methane gas mixture similar to Titan’s atmosphere into a collection of nitrogen-containing organic molecules by irradiating the gas with high-energy ultraviolet light. The laboratory set-up was designed to mimic how solar radiation affects Titan’s atmosphere.

Most of the nitrogen simply formed solid compounds directly, rather than gaseous ones, explains Smith, whereas previous theories suggested that nitrogen would move from gaseous compounds to solid ones in stepwise process. But, those settling particles may not contain nitrogen at all. If some of the particles are the same nitrogen-containing organic molecules created by the UA team in the laboratory then it would suggest that conditions conducive to life might just exist on Titan, Smith says.

These and other laboratory observations help scientists planning future space missions to decide on what to look for on other worlds that might hint at life and what instruments should be developed to help in the search.

Links

Proc Natl Acad Sci, 2010, online
Mark A. Smith homepage
UA lunar and planetary laboratory

Interplanetary storm

A meteoric storm raged over the Earth 13,000 years ago as thousands of pieces of rock each the size of the Tunguska comet rained down over the course of an hour. The end result was a dramatic cooling of the planet, according to astronomer Bill Napier of the Cardiff University Astrobiology Centre.

Writing in the journal Monthly Notices of the Royal Astronomical Society, Napier suggests that the temperature drop was as high as 8 Celsius and interrupted global warming at the end of the last ice age, causing glaciers to re-advance.

Scientists have puzzled over a boundary layer marked by the occurrence of a “black mat” tens of millimetres thick present at sites throughout the United States, which contains high levels of soot from continental-scale wildfires and nanoscopic hexagonal diamonds found only in meteorites or impact craters. The evidence hinted at a catastrophic change at that time caused by the impact of an asteroid or comet 4 km across on the Laurentide ice sheet, which at that time covered what would become Canada and the northern part of the United States.

Napier points out that the cooling lasted a more than a millennium and led to the rapid extinction of 35 genera of North American mammals, as well as the disruption of the Palaeoindian culture. However, the chances of an asteroid impacting the Earth during that period were extremely low. Moreover, the heat generated by the rising fireball would be limited by the curvature of the horizon and could not have led to the continent-wide occurrence of wildfires.

Napier has now devised a model that can account for the evidence.
According to Napier’s model, the Earth ran into a dense trail of material from a large disintegrating comet. He points out that there is compelling evidence that such a comet entered the inner planetary system between 20,000 and 30,000 years ago and has been fragmenting ever since, giving rise to a number of closely related meteor streams and asteroids known as the Taurid Complex.

As the comet disintegrated, the Earth would have ploughed through at least one dense swarm of cometary fragments over an hour-long period.
Thousands of individual impacts would have occurred across what is now continental America, each releasing the energy of a megaton atomic bomb and triggering extensive wildfires.

2005 Hubble Space Telescope image of the breakup of a comet (73/P Schwassmann-Wachmann 3).
2005 Hubble Space Telescope image of the breakup of a comet (73/P Schwassmann-Wachmann 3). Credit: NASA / ESA / H.Weaver (JHU/APL) / M. Mutchler / Z.Levay (STScI)

“A large comet has been disintegrating in the near-Earth environment for the past 20,000 to 30,000 years, and running into thousands of fragments from this comet is a much more likely event than a single large collision. It gives a convincing match to the major geophysical features at this boundary,” says Napier. Indeed, a recent meteorite which may have come from this giant comet progenitor fell on Yukon Territory in January 2000 and has the highest abundance of nanodiamonds of any meteorite so far analysed.

Links.
Monthly Notices Royal Astronom Soc, 2010, in press Preprint link
Cardiff staff

Tubes in space

Carbon nanotubes form in space but use a metal-free chemistry until now unavailable to chemists on Earth. The discovery is a surprising outcome of laboratory experiments designed by Joseph Nuth at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland, and his colleagues. They were hoping to understand how carbon atoms are recycled in stellar nurseries, the regions of space where stars and planets are born, but the finding could have applications in nanotechnology, as well as help explain some characteristics of supernovae.

Writing in the journal Astrophys J Lett, Nuth and colleagues explain how astrochemistry makes carbon nanotubes without requiring a metal catalyst. Nanotubes are produced, they say, when graphite dust particles are exposed to a mixture of carbon monoxide and hydrogen gases, conditions that exist in interstellar space.

The finding corroborates the discovery of graphite whiskers, bigger than nano nanotubes, in three meteorites. The meteoric discovery hinted at why some supernovae appear dimmer and farther away than they ought to be based on calculations using current models. Nuth’s approach is a variation of a well-established way to produce gasoline or other liquid fuels from coal. It’s known as Fischer-Tropsch synthesis, and researchers suspect that it could have produced at least some of the simple carbon-based compounds in the early solar system. Nuth proposes that the nanotubes yielded by such reactions could be the key to the recycling of the carbon that gets released when carbon-rich grains are destroyed by supernova explosions.

Stellar Nursery
A stellar nursery could be home to carbon nanotube factories (Credit: NASA, http://apod.nasa.gov/apod/ap021102.html)

The structure of the carbon nanotubes produced by Nuth and colleagues was determined by materials scientist Yuki Kimura, of Tohoku University, Japan, using transmission electron microscopy. He observed particles on which the original smooth graphite gradually morphed into an unstructured region and finally to an area rich in tangled hair-like masses. A closer look with an even more powerful microscope showed that these tendrils were in fact cup-stacked carbon nanotubes, resembling a stack of disposable drinking cups with the bottoms removed. If further testing indicates that the new method is suitable for materials-science applications, it could supplement, or even replace, the familiar way of making nanotubes, explains Kimura.

Researchers might also now evaluate whether graphite whiskers absorb light. A positive result would lend credence to the proposition that the presence of these molecules in space affects the observations of some supernovae.

LINKS

Astrophys J Lett, 2010, 710, L98-L101

http://dx.doi.org/10.1088/2041-8205/710/1/L98