Yet another supernova

Just when you’d given up hope of another starburst, a third type comes along unannounced! This third class of previously unidentified supernova could help explain some anomalous observations in the night sky and even how our bodies come to contain so much calcium.

Until recently, astronomers had assumed there were just two types of supernovae. The first two types of supernova are either hot, young giants that explode on to the scene violently as they collapse under their own weight, or old, dense white dwarves (type a1) that undergo a thermonuclear explosion to briefly add their light to the night sky.

However, a third class appeared in telescope images in early January, 2005 and scientists, seeing that it had recently begun the process of exploding, started collecting and combining data from different telescope sites around the world, measuring both the amount of material thrown off in the explosion and its chemical composition.

Avishay Gal-Yam and colleagues at the Weizmann Institute in Israel and teams in Canada, Chile, Italy, UK, and USA, soon realised that the new supernova was neither old and dense nor young and hot.

There was too little material being ejected by the 2005 supernova for it to be an exploding giant, but its remote location from stellar nurseries suggested it was old. Moreover, its chemical makeup did not match the second type of supernova. The scientists turned to a computer simulation to see if they could figure out what kind of stellar processes could give rise to this anomalous kind of starburst.

Type Ia supernovae are primarily composed of carbon and oxygen as seen in their spectra, but the newly discovered supernova has unusually high levels of calcium and titanium which derive from nuclear reactions of helium not carbon and oxygen. However, the astronomers were initially at a loss to explain the source of the helium. Their simulations suggested that a pair of white dwarves might have been involved, with one assimilating helium from the other. When the thief star’s helium load rises past a certain point, the explosion occurs. “The donor star is probably completely destroyed in the process, but we’re not quite sure about the fate of the thief star,” says Gal-Yam.

Helium theft may have led to a third class of supernova that gives rise to the calcium in your bones and the titanium in a replacement hip! (Credit: Gal-Yam, Weizmann Institute of Science.

These new supernovae are relatively dim, so may not be as rare as they at first seem. This might explain why calcium is so prevalent in the universe and so in life on earth. The existence of radioactive titanium from these supernovae might also preclude the need for exotic explanations, such as invoking dark matter, of positrons at the heart of our galaxy. “Dark matter may or may not exist,” says Gal-Yam, “but these positrons are perhaps just as easily accounted for by the third type of supernova.”

Links

Avishay Gal-Yam homepage

Flat-packed particles

Graphene, a Manchester University discovery, is a material comprising sheets of carbon just one atom thick; graphene is like a single layer of graphite. However, it was the discovery that it has some peculiar electronic properties because of the existence of massless quasiparticles that has led to an explosion of interest in this material. Some researchers suggest that ultimately it will become the material that gives us a post-silicon world in computing.

Now, US scientists have made the first observation of the energy bands of complex particles within graphene known as plasmarons. This small step is an important one in understanding graphene and using it to develop devices for that future of ultrafast chemical computers.

At Berkeley Lab’s Advanced Light Source, an international team led by Aaron Bostwick and Eli Rotenberg have shown that these composite plasmaron particles are vital in generating graphene’s unique properties. “Graphene’s true electronic structure can’t be understood without understanding the many complex interactions of electrons with other particles.”

The electric charge carriers in graphene are negative electrons and positive holes, which in turn are affected by plasmons, oscillations in the density of the material that travel like sound waves through a sea of electrons. A plasmaron is “simply” a charge carrier coupled to a plasmon. “Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence for them has been found, our work is the first observation of their distinct energy bands in graphene, or indeed in any material,” Rotenberg says. The team reported details of their findings in the journal Science in May.

Top: graphene structure. Bottom: a theoretical model of plasmaron interactions in graphene, sheets of carbon one atom thick.

The relationships between charge carriers, plasmons, and plasmarons will be important in the development of plasmonics, the architecture analogous to electronics in conventional silicon semiconductor circuitry. An important aspect of studying these relationships is to produce flat graphene sheets; graphene is usually rumpled like unmade bed linen. “One of the best ways to grow a flat sheet of graphene is by heating a crystal of silicon carbide,” Rotenberg explains, “and it happens that our German colleagues Thomas Seyller from the University of Erlangen and Karsten Horn from the Fritz Haber Institute in Berlin are experts at working with silicon carbide. As the silicon recedes from the surface it leaves a single carbon layer.”

With flat graphene sheets in hand, the team used a beam of low-energy, or soft, X-rays to analyse the materials. The resulting data provided them with an image of the electronic bands created by the electrons themselves. Even from the initial experiments, the team suspected graphene’s behaviour was more complicated than simple theory would suggest and seemed to hint at the existence of bare electrons. Since bare electrons cannot exist, the researchers postulated the fuzziness in their image was due to charge carriers emitting plasmons. Additional experiments with graphene sheets isolated from their support material revealed that electrons detached by the X-rays can leave behind either an ordinary hole or a hole bound to a plasmon – a plasmaron, explains Rotenberg.

“By their nature, plasmons couple strongly to photons, which promises new ways for manipulating light in nanostructures, giving rise to the field of plasmonics,” Rotenberg says. “Now we know that plasmons couple strongly to the charge carriers in graphene, which suggests that graphene may have an important role to play in the merging fields of electronics, photonics, and plasmonics on the nanoscale.”

Links

Science, 2010, 328, 999-1002
Eli Rotenberg homepage

Low-temperature fraud detection

A low-temperature plasma probe can identify art fraud without damaging the artwork, which is important should the work turn out to be genuine.

Many priceless works of art are very delicate, so restoration, conservation, dating and authentication require sophisticated technical methods that avoid interfering with the substance of the work. Now, Sichun Zhang and colleagues at Tsinghua University in Beijing, China, have developed a new mass spectrometric imaging technique that can characterise paintings and calligraphy by barely scratching the surface.

In conventional mass spectrometry a substance is vaporised and then ionised to produce electrically charged particles of different sizes depending on the chemical structure of the compound. The ions are accelerated by an electric field and spread out by a magnetic field to produce a spectrum as the magnetic field makes particles of different mass to charge ratio deviate more or less than each other. Imaging mass spectrometry involves scanning a surface and releasing ions directly from the surface using special ionization methods. Unfortunately, these techniques require vacuum conditions, which limits sample size so that previously a tiny cutting would need to be removed from an artwork for analysis.

Probing reveals hidden information about art work without causing damage

The Chinese team has developed a low-temperature plasma probe, which consists of a fused capillary and two electrodes made of aluminium foil. High voltage alternating current applied to this probe induces a discharge in the capillary forming a low-temperature plasma; the probe reaches a mere 30 Celsius. However, in this state the helium plasma has energetic and excited enough to eject a few molecules from the surface of a sample and ionize them without measureable damage to a work of art.

The researchers used their approach to test seals, stamped signatures on Chinese paintings and calligraphy. They could reveal variations in ink composition easily, making it possible to differentiate between authentic and forged seals.

Links

Angew Chem Int Edn, 2010, online
Professor Dr. Xinrong ZHANG