DNA and chips

The secret ingredient in a future biological computer is to add a little DNA. But, making hybrid devices from a silicon chip and a strand of genetic material means mixing hard-wired microelectronics technology with the softer world of molecular biology.

Now, chemists at the University of Newcastle upon Tyne have come up with a solution that could lead to new lab-on-a-chip devices and biological sensors for use in medicine and environmental analysis. It might even one day allow biology to compute or provide an interface between electronic devices and living things.

Ben Horrocks

Ben Horrocks

Newcastle chemists Benjamin Horrocks and Andrew Houlton and their colleagues have devised a way to automate the solid-phase synthesis of DNA on a semiconductor chip. They believe their method could readily be adapted to the conventional fabrication techniques of photolithography used in the microelectronics industry to pattern the microscopic transistors and circuitry on a computer chip.

The team recently reported how it has found a way to attach a DNA sequence of just seventeen nucleotides to a silicon surface modified with organic molecules. The key to unlocking hybrid DNA chips lies in the team’s use of bifunctional organic molecules. At one end the molecule has the right chemistry to allow it to be attached to an oxide-free silicon surface. The other end of the molecule has a functional chemical group on which a DNA strand can be grown using an automated DNA synthesizer of the kind found in biotech laboratories the world over.

Andrew Houlton

Andrew Houlton

The team is working with two aims in mind – first, the development of chemical sensors and secondly the synthesis of DNA on silicon surfaces for nanoscale molecular architecture. This addresses the projected reduction in the size of electronic components which by 2015 are predicted to be of the order of nanometres (i.e. built from molecules), explains Houlton.

Gel electrophoresis reveals DNA is attached to the silicon

Gel electrophoresis reveals DNA is attached to the silicon

Previous endeavours in this area have generally used glass in preference to silicon wafers and those that have focused on silicon have applied organic molecules to an oxidised surface rather than the naked silicon chip. The Newcastle team has now confirmed that it is possible to cover the surface of a silicon chip with DNA strands. Moreover, the 17-base DNA strands can be coupled with the complementary DNA strand making the familiar DNA double helix. From the nanodevice perspective the importance of the team’s work lies in their ability to pattern the surface of the silicon rather than simply randomly deposit DNA strands. Patterning using the printing and etching techniques of microelectronics fabrication means they can tightly control the arrangement of the DNA on the surface and so produce what might one day become molecular circuitry.

A DNA-patterned silicon surface

A DNA-patterned silicon surface

Sequential modification of a silicon surface with DNA

Sequential modification of a silicon surface with DNA

Further reading

Angew. Chem. Int. Ed., 41, 615 (2002)
http://www3.interscience.wiley.com/cgi-bin/abstract/90512278/ABSTRACT

DOI: 10.1002/1521-3773(20020215)41:4<615::AID-ANIE615>3.0.CO;2-Y

Benjamin Horrocks
http://www.ncl.ac.uk/chemistry/staff/profile/b.r.horrocks

Andrew Houlton
http://www.ncl.ac.uk/chemistry/staff/profile/andrew.houlton

Suggested searches

Molecular Electronics
Nanotechnology

Flowing hot and cold

It is a relatively easy to control the direction of an electric current – use a rectifier – but heat usually flows from hot to cold. Now, Italian and French researchers have devised a rectifier for heat in a computer simulation. They reckon a heat rectifier might be made from DNA or another biological molecule.

Giulio Casati, Michael Peyrard and Marcello Terraneo of Insubria University in Como, Italy, have simulated the vibrations of atoms in a crystal lattice and reckon that given the right arrangement of atoms a device could be built that carried heat energy in one direction only. They looked at one-dimensional solids whose vibrational frequency depends on the size of the vibration. A material such as a long strand of DNA in the solid state might behave in this way for instance.

Thermal transfer Renaissance style (Georges de La Tour, particular of Saint Joseph, Paris, Musée du Louvre)

Thermal transfer Renaissance style (Georges de La Tour, particular of Saint Joseph, Paris, Musée du Louvre)

In such an anharmonic material, energy is transferred less efficiently from one end to the other than in a harmonic material where the vibrational frequency (temperature) is independent of the amplitude of the vibration.

At its simplest level, thermodynamics describes atoms in a solid as vibrating with heat energy flow as though they are connected to each other by springs. Casati believes that computational tools can provide a deeper insight and as such allow interesting and potentially surprising properties, such as allowing heat to travel in only one direction.

Giulio Casati

Giulio Casati

A thermal rectifier might consist of an anharmonic chain molecule tethered by a stiff molecular spring at one end and a loose spring at the other. When the spring is at a higher temperature, the chain molecule will vibrate more slowly because energy is not carried through the chain so effectively. Imagine the effect of plucking a guitar string on to which small pieces of children’s play clay have been stuck. The sound produced would be muffled because of the inefficiency of the string’s vibration. Suppose such a thermal rectifier material as we describe is constructed and you put some object inside this material, then if what is inside is cold then it remains cold; if instead it is warm it will cool down. The heat can flow only in one direction, Casati explained to Spotlight.

Computer simulated rectifier

Computer simulated rectifier

Such a thermal rectifier might have applications in electronics – as a cooling device for computer chips and in biotechnology as a heat flow controller for microscale chemical reactors. As to applications, I feel it is too early to say… much work needs to be done, confesses Casati, but what is important is that we now know that possibility exists.

Further reading

Phys. Rev. Lett. 88, 094302
http://link.aps.org/abstract/PRL/v88/e094302/

DOI: 10.1103/PhysRevLett.88.094302

Michael Peyrard
http://perso.ens-lyon.fr/michel.peyrard/

Suggested searches

Thermal Rectifiers
Thermodynamics